Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.908
Filtrar
1.
J Mass Spectrom ; 59(5): e5026, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38656572

RESUMEN

Identification and specific quantification of isomers in a complex biological matrix by mass spectrometry alone is not an easy task due to their identical chemical formula and therefore their same mass-to-charge ratio (m/z). Here, the potential of direct introduction combined with ion mobility-mass spectrometry (DI-IM-MS) for rapid quantification of isomers as human milk oligosaccharides (HMOs) was investigated. Differences in HMO profiles between various analyzed breast milk samples were highlighted using the single ion mobility monitoring (SIM2) acquisition for high ion mobility resolution detection. Furthermore, the Se+ (secretor) or Se- (non-secretor) phenotype could be assigned to breast milk samples studied based on their HMO contents, especially on the response of 2'-fucosyllactose (2'-FL) and lacto-N-fucopentaose I (LNFP I). The possibility of quantifying a specific isomer in breast milk by DI-IM-MS was also investigated. The standard addition method allowed the determination of the 2'-FL despite the presence of other oligosaccharides, including 3-fucosyllactose (3-FL) isomer in breast milk. This proof-of-concept study demonstrated the high potential of such an approach for the rapid and convenient quantification of isomers in complex mixtures.


Asunto(s)
Espectrometría de Movilidad Iónica , Leche Humana , Oligosacáridos , Trisacáridos , Leche Humana/química , Humanos , Trisacáridos/análisis , Trisacáridos/química , Oligosacáridos/análisis , Oligosacáridos/química , Isomerismo , Femenino , Espectrometría de Movilidad Iónica/métodos , Espectrometría de Masas/métodos
2.
Anal Chem ; 96(16): 6170-6179, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38616610

RESUMEN

Despite their many important physiological functions, past work on the diverse sequences of human milk oligosaccharides (HMOs) has been focused mainly on the highly abundant HMOs with a relatively low degree of polymerization (DP) due to the lack of efficient methods for separation/purification and high-sensitivity sequencing of large-sized HMOs with DP ≥ 10. Here we established an ultrahigh-temperature preparative HPLC based on a porous graphitized carbon column at up to 145 °C to overcome the anomeric α/ß splitting problem and developed further the negative-ion ESI-CID-MS/MS into multistage MSn using a combined product-ion scanning of singly charged molecular ion and doubly charged fragment ion of the branching Gal and adjacent GlcNAc residues. The separation and sequencing method allows efficient separation of a neutral fraction with DP ≥ 10 into 70 components, among which 17 isomeric difucosylated nona- and decasaccharides were further purified and sequenced. As a result, novel branched difucosyl heptaose and octaose backbones were unambiguously identified in addition to the conventional linear and branched octaose backbones. The novel structures of difucosylated DF-novo-heptaose, DF-novo-LNO I, and DF-novo-LNnO I were corroborated by NMR. The various fucose-containing Lewis epitopes identified on different backbones were confirmed by oligosaccharide microarray analysis.


Asunto(s)
Leche Humana , Oligosacáridos , Espectrometría de Masa por Ionización de Electrospray , Humanos , Leche Humana/química , Oligosacáridos/química , Oligosacáridos/aislamiento & purificación , Oligosacáridos/análisis , Cromatografía Líquida de Alta Presión , Espectrometría de Masas en Tándem , Temperatura
3.
Nutrients ; 16(5)2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38474771

RESUMEN

Human milk oligosaccharides (HMOs) are a set of complex carbohydrates and the third largest solid component of human milk, after lactose and lipids. To date, over 150 HMOs have been identified and the diversity of structures produced by lactating women is influenced by maternal genetics as well as other maternal, infant, and environmental factors. While the concentrations of individual HMOs have been shown to vary between individuals and throughout the course of lactation, the variability of HMO concentration profiles following different pregnancies occurring in the same woman is presently unknown. As such, the objective of this study was to compare HMO concentrations in human milk samples provided by the same women (n = 34) following repeat pregnancies. We leveraged existing human milk samples and metadata from the UC San Diego Human Milk Research Biorepository (HMB) and measured the concentrations of the 19 most abundant HMOs using high-performance liquid chromatography with fluorescence detection (HPLC-FL). By assessing dissimilarities in HMO concentration profiles, as well as concentration trends in individual structures between pregnancies of each participant, we discovered that HMO profiles largely follow a highly personalized and predictable trajectory following different pregnancies irrespective of non-genetic influences. In conclusion, this is the first study to assess the interactions between parity and time following delivery on variations in HMO compositions.


Asunto(s)
Lactancia , Leche Humana , Lactante , Embarazo , Humanos , Femenino , Leche Humana/química , Lactancia Materna , Oligosacáridos/análisis , Cromatografía Líquida de Alta Presión
4.
mSystems ; 9(4): e0029424, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38530054

RESUMEN

Maternal secretor status is one of the determinants of human milk oligosaccharides (HMOs) composition, which, in turn, influences the gut microbiota composition of infants. To understand if this change in gut microbiota impacts immune cell composition, intestinal morphology, and gene expression, 21-day-old germ-free C57BL/6 mice were transplanted with fecal microbiota from infants whose mothers were either secretors (SMM) or non-secretors (NSM) or from infants consuming dairy-based formula (MFM). For each group, one set of mice was supplemented with HMOs. HMO supplementation did not significantly impact the microbiota diversity; however, SMM mice had a higher abundance of genus Bacteroides, Bifidobacterium, and Blautia, whereas, in the NSM group, there was a higher abundance of Akkermansia, Enterocloster, and Klebsiella. In MFM, gut microbiota was represented mainly by Parabacteroides, Ruminococcaceae_unclassified, and Clostrodium_sensu_stricto. In mesenteric lymph node, Foxp3+ T cells and innate lymphoid cells type 2 were increased in MFM mice supplemented with HMOs, while in the spleen, they were increased in SMM + HMOs mice. Similarly, serum immunoglobulin A was also elevated in MFM + HMOs group. Distinct global gene expression of the gut was observed in each microbiota group, which was enhanced with HMOs supplementation. Overall, our data show that distinct infant gut microbiota due to maternal secretor status or consumption of dairy-based formula and HMO supplementation impacts immune cell composition, antibody response, and intestinal gene expression in a mouse model. IMPORTANCE: Early life factors like neonatal diet modulate gut microbiota, which is important for the optimal gut and immune function. One such factor, human milk oligosaccharides (HMOs), the composition of which is determined by maternal secretor status, has a profound effect on infant gut microbiota. However, how the infant gut microbiota composition determined by maternal secretor status or consumption of infant formula devoid of HMOs impacts infant intestinal ammorphology, gene expression, and immune signature is not well explored. This study provides insights into the differential establishment of infant microbiota derived from infants fed by secretor or non-secretor mothers milk or those consuming infant formula and demonstrates that the secretor status of mothers promotes Bifidobacteria and Bacteroides sps. establishment. This study also shows that supplementation of pooled HMOs in mice changed immune cell composition in the spleen and mesenteric lymph nodes and immunoglobulins in circulation. Hence, this study highlights that maternal secretor status has a role in infant gut microbiota composition, and this, in turn, can impact host gut and immune system.


Asunto(s)
Inmunidad Innata , Microbiota , Lactante , Femenino , Humanos , Animales , Ratones , Ratones Endogámicos C57BL , Linfocitos/metabolismo , Leche Humana/química , Sistema Inmunológico/metabolismo , Oligosacáridos/análisis , Bifidobacterium/genética
5.
Sci Rep ; 14(1): 6730, 2024 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509153

RESUMEN

Human milk oligosaccharides (HMOs) impact neonate immunity and health outcomes. However, the environmental factors influencing HMO composition remain understudied. This study examined the associations between ambient air pollutant (AAP) exposure and HMOs at 1-month postpartum. Human milk samples were collected at 1-month postpartum (n = 185). AAP (PM2.5, PM10, NO2) exposure included the 9-month pregnancy period through 1-month postpartum. Associations between AAP with (1) HMO diversity, (2) the sum of sialylated and fucosylated HMOs, (3) 6 a priori HMOs linked with infant health, and (4) all HMOs were examined using multivariable linear regression and principal component analysis (PCA). Exposure to AAP was associated with lower HMO diversity. PM2.5 and PM10 exposure was positively associated with the HMO 3-fucosyllactose (3FL); PM2.5 exposure was positively associated with the sum of total HMOs, sum of fucosylated HMOs, and the HMO 2'-fucosyllactose (2'FL). PCA indicated the PM2.5, PM10, and NO2 exposures were associated with HMO profiles. Individual models indicated that AAP exposure was associated with five additional HMOs (LNFP I, LNFP II, DFLNT, LNH). This is the first study to demonstrate associations between AAP and breast milk HMOs. Future longitudinal studies will help determine the long-term impact of AAP on human milk composition.


Asunto(s)
Contaminación del Aire , Leche Humana , Lactante , Recién Nacido , Embarazo , Femenino , Humanos , Leche Humana/química , Dióxido de Nitrógeno/análisis , Oligosacáridos/análisis , Contaminación del Aire/análisis , Material Particulado
6.
Methods Mol Biol ; 2763: 37-44, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38347397

RESUMEN

Since the core protein of mucin in the digesta of the stomach and small intestine, which is less affected by bacteria, remains intact, mucin content can be measured by enzyme-linked immunosorbent assay (ELISA). However, the mucin core protein in bacteria-rich colon digesta and feces is partially hydrolyzed by bacterial enzymes and not fully recognized by mucin antibodies, so mucin cannot be accurately quantified by ELISA. This method quantifies the glycan content linked to the mucin core protein and expresses mucin content in the colon digesta and feces as the equivalent of O-linked oligosaccharide chain. Although mucin glycans are also hydrolyzed by colonic bacteria, this method is a more accurate and simple way to measure mucin content in the digesta of the large intestine and feces than the ELISA method.


Asunto(s)
Mucinas , Roedores , Animales , Mucinas/metabolismo , Roedores/metabolismo , Oligosacáridos/análisis , Polisacáridos/metabolismo , Bacterias/metabolismo , Heces/microbiología
7.
mSystems ; 9(3): e0071523, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38363147

RESUMEN

Bifidobacterium longum subsp. infantis is a representative and dominant species in the infant gut and is considered a beneficial microbe. This organism displays multiple adaptations to thrive in the infant gut, regarded as a model for human milk oligosaccharides (HMOs) utilization. These carbohydrates are abundant in breast milk and include different molecules based on lactose. They contain fucose, sialic acid, and N-acetylglucosamine. Bifidobacterium metabolism is complex, and a systems view of relevant metabolic pathways and exchange metabolites during HMO consumption is missing. To address this limitation, a refined genome-scale network reconstruction of this bacterium is presented using a previous reconstruction of B. infantis ATCC 15967 as a template. The latter was expanded based on an extensive revision of genome annotations, current literature, and transcriptomic data integration. The metabolic reconstruction (iLR578) accounted for 578 genes, 1,047 reactions, and 924 metabolites. Starting from this reconstruction, we built context-specific genome-scale metabolic models using RNA-seq data from cultures growing in lactose and three HMOs. The models revealed notable differences in HMO metabolism depending on the functional characteristics of the substrates. Particularly, fucosyl-lactose showed a divergent metabolism due to a fucose moiety. High yields of lactate and acetate were predicted under growth rate maximization in all conditions, whereas formate, ethanol, and 1,2-propanediol were substantially lower. Similar results were also obtained under near-optimal growth on each substrate when varying the empirically observed acetate-to-lactate production ratio. Model predictions displayed reasonable agreement between central carbon metabolism fluxes and expression data across all conditions. Flux coupling analysis revealed additional connections between succinate exchange and arginine and sulfate metabolism and a strong coupling between central carbon reactions and adenine metabolism. More importantly, specific networks of coupled reactions under each carbon source were derived and analyzed. Overall, the presented network reconstruction constitutes a valuable platform for probing the metabolism of this prominent infant gut bifidobacteria.IMPORTANCEThis work presents a detailed reconstruction of the metabolism of Bifidobacterium longum subsp. infantis, a prominent member of the infant gut microbiome, providing a systems view of its metabolism of human milk oligosaccharides.


Asunto(s)
Fucosa , Leche Humana , Lactante , Femenino , Humanos , Leche Humana/química , Fucosa/análisis , Lactosa/análisis , Oligosacáridos/análisis , Bifidobacterium/genética , Bifidobacterium longum subspecies infantis/metabolismo , Acetatos/análisis , Carbono/análisis , Lactatos/análisis
8.
Life Sci ; 339: 122420, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38218534

RESUMEN

Human milk is the most valuable source of nutrition for infants. The structure and function of human milk oligosaccharides (HMOs), which are key components of human milk, have long been attracting particular research interest. Several recent studies have found HMOs to be efficacious in the prevention and treatment of necrotizing enterocolitis (NEC). Additionally, they could be developed in the future as non-invasive predictive markers for NEC. Based on previous findings and the well-defined functions of HMOs, we summarize potential protective mechanisms of HMOs against neonatal NEC, which include: modulating signal receptor function, promoting intestinal epithelial cell proliferation, reducing apoptosis, restoring intestinal blood perfusion, regulating microbial prosperity, and alleviating intestinal inflammation. HMOs supplementation has been demonstrated to be protective against NEC in both animal studies and clinical observations. This calls for mass production and use of HMOs in infant formula, necessitating more research into the safety of industrially produced HMOs and the appropriate dosage in infant formula.


Asunto(s)
Enterocolitis Necrotizante , Leche Humana , Lactante , Animales , Recién Nacido , Humanos , Leche Humana/química , Enterocolitis Necrotizante/tratamiento farmacológico , Enterocolitis Necrotizante/prevención & control , Intestinos , Proliferación Celular , Oligosacáridos/farmacología , Oligosacáridos/uso terapéutico , Oligosacáridos/análisis
9.
Microbiol Mol Biol Rev ; 88(1): e0009423, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38206006

RESUMEN

SUMMARYHuman milk oligosaccharides (HMOs) are complex, multi-functional glycans present in human breast milk. They represent an intricate mix of heterogeneous structures which reach the infant intestine in an intact form as they resist gastrointestinal digestion. Therefore, they confer a multitude of benefits, directly and/or indirectly, to the developing neonate. Certain bifidobacterial species, being among the earliest gut colonizers of breast-fed infants, have an adapted functional capacity to metabolize various HMO structures. This ability is typically observed in infant-associated bifidobacteria, as opposed to bifidobacteria associated with a mature microbiota. In recent years, information has been gleaned regarding how these infant-associated bifidobacteria as well as certain other taxa are able to assimilate HMOs, including the mechanistic strategies enabling their acquisition and consumption. Additionally, complex metabolic interactions occur between microbes facilitated by HMOs, including the utilization of breakdown products released from HMO degradation. Interest in HMO-mediated changes in microbial composition and function has been the focal point of numerous studies, in recent times fueled by the availability of individual biosynthetic HMOs, some of which are now commonly included in infant formula. In this review, we outline the main HMO assimilatory and catabolic strategies employed by infant-associated bifidobacteria, discuss other taxa that exhibit breast milk glycan degradation capacity, and cover HMO-supported cross-feeding interactions and related metabolites that have been described thus far.


Asunto(s)
Microbioma Gastrointestinal , Leche Humana , Recién Nacido , Femenino , Humanos , Leche Humana/química , Bifidobacterium , Lactancia Materna , Oligosacáridos/análisis , Oligosacáridos/metabolismo
10.
Br J Nutr ; 131(9): 1506-1512, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38178715

RESUMEN

This study compared the concentrations, types and distributions of sialic acid (SA) in human milk at different stages of the postnatal period with those in a range of infant formulas. Breast milk from mothers of healthy, full-term and exclusively breastfed infants was collected on the 2nd (n 246), 7th (n 135), 30th (n 85) and 90th (n 48) day after birth. The SA profiles of human milk, including their distribution, were analysed and compared with twenty-four different infant formulas. Outcome of this observational study was the result of natural exposure. Only SA of type Neu5Ac was detected in human milk. Total SA concentrations were highest in colostrum and reduced significantly over the next 3 months. Approximately 68·7­76·1 % of all SA in human milk were bound to oligosaccharides. Two types of SA, Neu5Ac and Neu5Gc, have been detected in infant formulas. Most SA was present in infant formulas combined with protein. Breastfed infants could receive more SA than formula-fed infants with the same energy intake. Overall, human milk is a preferable source of SA than infant formulas in terms of total SA content, dynamics, distribution and type. These SA profiles in the natural state are worth to be considered by the production of formulas because they may have a great effect on infant nutrition and development.


Asunto(s)
Fórmulas Infantiles , Leche Humana , Ácido N-Acetilneuramínico , Humanos , Leche Humana/química , Fórmulas Infantiles/química , Ácido N-Acetilneuramínico/análisis , China , Femenino , Lactante , Recién Nacido , Lactancia Materna , Calostro/química , Oligosacáridos/análisis , Fenómenos Fisiológicos Nutricionales del Lactante , Masculino
11.
Sci Rep ; 14(1): 1649, 2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-38238389

RESUMEN

The development of a stable human gut microbiota occurs within the first year of life. Many open questions remain about how microfloral species are influenced by the composition of milk, in particular its content of human milk oligosaccharides (HMOs). The objective is to investigate the effect of the human HMO glycome on bacterial symbiosis and competition, based on the glycoside hydrolase (GH) enzyme activities known to be present in microbial species. We extracted from UniProt a list of all bacterial species catalysing glycoside hydrolase activities (EC 3.2.1.-), cross-referencing with the BRENDA database, and obtained a set of taxonomic lineages and CAZy family data. A set of 13 documented enzyme activities was selected and modelled within an enzyme simulator according to a method described previously in the context of biosynthesis. A diverse population of experimentally observed HMOs was fed to the simulator, and the enzymes matching specific bacterial species were recorded, based on their appearance of individual enzymes in the UniProt dataset. Pairs of bacterial species were identified that possessed complementary enzyme profiles enabling the digestion of the HMO glycome, from which potential symbioses could be inferred. Conversely, bacterial species having similar GH enzyme profiles were considered likely to be in competition for the same set of dietary HMOs within the gut of the newborn. We generated a set of putative biodegradative networks from the simulator output, which provides a visualisation of the ability of organisms to digest HMO and mucin-type O-glycans. B. bifidum, B. longum and C. perfringens species were predicted to have the most diverse GH activity and therefore to excel in their ability to digest these substrates. The expected cooperative role of Bifidobacteriales contrasts with the surprising capacities of the pathogen. These findings indicate that potential pathogens may associate in human gut based on their shared glycoside hydrolase digestive apparatus, and which, in the event of colonisation, might result in dysbiosis. The methods described can readily be adapted to other enzyme categories and species as well as being easily fine-tuneable if new degrading enzymes are identified and require inclusion in the model.


Asunto(s)
Bifidobacterium bifidum , Clostridium perfringens , Recién Nacido , Humanos , Bifidobacterium , Mucinas/análisis , Oligosacáridos/análisis , Leche Humana/química , Bacterias , Glicósido Hidrolasas/análisis , Digestión
12.
J Sep Sci ; 47(1): e2300705, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38095448

RESUMEN

The sample preparation including labeling and clean-up represents a key analytical step in the analysis of oligosaccharides and glycans by either chromatographic or electrophoretic separation methods. Although the majority of labeling has been performed by neutral and/or negatively charged tags, the introduction of a positive charge into the saccharide molecule can significantly improve the analysis, especially with mass spectrometry detection. In this work, we present the evaluation of five solid-phase extraction sorbents differing in extraction chemistry for the clean-up and concentration of positively labeled maltooligosaccharides from the reaction mixtures. Maltooligosaccharides containing four to seven glucose units were labeled by cationic tags (2-aminoethyl)trimethylammonium chloride and (carboxymethyl)trimethylammonium chloride hydrazide and the extraction conditions were optimized followed by electrophoretic analysis with conductivity detection. The effects of the solid-phase extraction sorbent chemistry, extraction conditions, and sample composition are discussed. All tested sorbents were capable of cleaning up maltooligosaccharides from the reaction mixtures to some extent after optimization of the solid-phase extraction procedure (51.9%-98.9% recovery). The best-rated amide-based sorbent was used to process the sample of N-linked glycans enzymatically released from ribonuclease B.


Asunto(s)
Oligosacáridos , Polisacáridos , Oligosacáridos/análisis , Polisacáridos/química , Electroforesis Capilar/métodos , Espectrometría de Masas , Extracción en Fase Sólida
13.
Anal Chem ; 96(1): 163-169, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38153380

RESUMEN

Understanding the biological role of protein-linked glycans requires the reliable identification of glycans. Isomer separation and characterization often entail mass spectrometric detection preceded by high-performance chromatography on porous graphitic carbon. To this end, stable isotope-labeled glycans have emerged as powerful tools for retention time normalization. Hitherto, such standards were obtained by chemoenzymatic or purely enzymatic methods, which introduce, e.g., 13C-containing N-acetyl groups or galactose into native glycans. Glycan release with anhydrous hydrazine opens another route for heavy isotope introduction via concomitant de-N-acetylation. Here, we describe that de-N-acetylation can also be achieved with hydrazine hydrate, which is a more affordable and less hazardous reagent. Despite the slower reaction rate, complete conversion is achievable in 72 h at 100 °C for glycans with biantennary glycans with or without sialic acids. Shorter incubation times allow for the isolation of intermediate products with a defined degree of free amino groups, facilitating introduction of different numbers of heavy isotopes. Mass encoded glycans obtained by this versatile approach can serve a broad range of applications, e.g., as internal standards for isomer-specific studies of N-glycans, O-glycans, and human milk oligosaccharide by LC-MS on either porous graphitic carbon or─following permethylation─on reversed phase.


Asunto(s)
Grafito , Polisacáridos , Humanos , Polisacáridos/química , Espectrometría de Masas , Oligosacáridos/análisis , Carbono/química , Grafito/química , Isótopos
14.
J Agric Food Chem ; 72(1): 670-678, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38135877

RESUMEN

Human milk is important for infant growth, and oligosaccharides are one of its main functional nutrients. To enable a systematic comparison of free oligosaccharide and glycoconjugate content in milk from different species, the phenol-sulfuric acid and resorcinol assays were combined to determine the content. Using real samples, the method revealed that human milk contained the highest amount of total, neutral (9.84 ± 0.31 g/L), and sialylated (3.21 ± 0.11 g/L) free oligosaccharides, followed by goat milk, with neutral (0.135 ± 0.015 g/L) and sialylated (0.192 ± 0.016 g/L) free oligosaccharides and at a distance by bovine and yak milk. The highest total glycoconjugate content was detected in yak milk (0.798 ± 0.011 g/L), followed by human, bovine, and goat milk. These findings suggest that goat milk is the best source of free oligosaccharides in infant formula and functional dairy products and yak milk is the best source of glycoconjugates.


Asunto(s)
Leche Humana , Leche , Lactante , Animales , Bovinos , Humanos , Leche/química , Leche Humana/química , Oligosacáridos/análisis , Glicoconjugados , Fórmulas Infantiles/análisis , Cabras
15.
Nutrients ; 15(21)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37960297

RESUMEN

Premature infants, given their limited reserves, heightened energy requirements, and susceptibility to nutritional deficits, require specialized care. AIM: To examine the complex interplay between nutrition and neurodevelopment in premature infants, underscoring the critical need for tailored nutritional approaches to support optimal brain growth and function. DATA SOURCES: PubMed and MeSH and keywords: preterm, early nutrition, macronutrients, micronutrients, human milk, human milk oligosaccharides, probiotics AND neurodevelopment or neurodevelopment outcomes. Recent articles were selected according to the authors' judgment of their relevance. Specific nutrients, including macro (amino acids, glucose, and lipids) and micronutrients, play an important role in promoting neurodevelopment. Early and aggressive nutrition has shown promise, as has recognizing glucose as the primary energy source for the developing brain. Long-chain polyunsaturated fatty acids, such as DHA, contribute to brain maturation, while the benefits of human milk, human milk oligosaccharides, and probiotics on neurodevelopment via the gut-brain axis are explored. This intricate interplay between the gut microbiota and the central nervous system highlights human milk oligosaccharides' role in early brain maturation. CONCLUSIONS: Individualized nutritional approaches and comprehensive nutrient strategies are paramount to enhancing neurodevelopment in premature infants, underscoring human milk's potential as the gold standard of nutrition for preterm infants.


Asunto(s)
Fenómenos Fisiológicos Nutricionales del Lactante , Recien Nacido Prematuro , Lactante , Femenino , Recién Nacido , Humanos , Leche Humana/química , Ácidos Grasos/análisis , Micronutrientes/análisis , Oligosacáridos/análisis , Glucosa/análisis
16.
Food Res Int ; 174(Pt 1): 113589, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37986455

RESUMEN

Human milk is considered the optimal food for infants with abundant nutrients and bioactive components, which play key roles in infant health and development. Infant formulas represent appropriate substitutes for human milk. There are many brands of infant formula with different ingredient sources and functions on the market. The present study aims to quantify important bioactive components, i.e., milk oligosaccharides (MOS), sialic acids (Sia) and corticosteroids, in different infant formulas and compare these to human milk. In total, 12 different infant formulas available on the Dutch market were analyzed in this study. The concentrations of MOS and Sia were characterized by UHPLC-FLD and LC-MS, while corticosteroids were determined using established UHPLC-MS/MS methods. Among infant formulas, 15 structures of oligosaccharides were identified, of which 2'-Fucosyllactose (2'FL), 3'-Galactosyllactose (3'GL) and 6'-Galactosyllactose (6́'GL) were found in all infant formulas. The oligosaccharide concentrations differed between milk source and brands and were 3-5 times lower than in human milk. All infant formulas contained Sia, N-acetylneuraminic acid (Neu5Ac) was dominant in bovine milk-based formulas, while N-glycolylneuraminic acid (Neu5Gc) was major in goat milk-based formula. All infant formulas contained corticosteroids, yet, at lower concentrations than human milk. Insight in concentrations of bioactive components in infant formula compared to human milk may give direction to dietary advices and/or novel formula design.


Asunto(s)
Fórmulas Infantiles , Ácidos Siálicos , Lactante , Humanos , Fórmulas Infantiles/química , Ácidos Siálicos/análisis , Espectrometría de Masas en Tándem , Leche Humana/química , Oligosacáridos/análisis , Corticoesteroides/análisis
17.
J Agric Food Chem ; 71(43): 16102-16113, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37856320

RESUMEN

Four human milk oligosaccharides (HMOs), 3'-sialyllactose (3'-SL), 6'-sialyllactose (6'-SL), 2'-fucosyllactose (2'-FL), and 3-fucosyllactose (3-FL), were assessed for their possible antiviral activity against the SARS-CoV-2 spike receptor binding domain (RBD) in vitro. Among them, only 2'-FL/3-FL exhibited obvious antibinding activity against direct binding and trans-binding in competitive immunocytochemistry and enzyme-linked immunosorbent assays. The antiviral effects of 2'-FL/3-FL were further confirmed by pseudoviral assays with three SARS-Cov-2 mutants, with a stronger inhibition effect of 2'-FL than 3-FL. Then, 2'-FL/3-FL were studied with molecular docking and microscale thermophoresis analysis, showing that the binding sites of 2'-FL on RBD were involved in receptor binding, in addition to a tighter bond between them, thus enabling 2'-FL to be more effective than 3-FL. Moreover, the immunomodulation effect of 2'-FL was preliminary evaluated and confirmed in a human alveolus chip. These results would open up possible applications of 2'-FL for the prevention of SARS-CoV-2 infections by competitive binding inhibition.


Asunto(s)
COVID-19 , Leche Humana , Humanos , Leche Humana/química , SARS-CoV-2 , Simulación del Acoplamiento Molecular , Oligosacáridos/farmacología , Oligosacáridos/análisis , Antivirales/farmacología
18.
FEMS Microbiol Rev ; 47(6)2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37793834

RESUMEN

A number of bacterial species are found in high abundance in the faeces of healthy breast-fed infants, an occurrence that is understood to be, at least in part, due to the ability of these bacteria to metabolize human milk oligosaccharides (HMOs). HMOs are the third most abundant component of human milk after lactose and lipids, and represent complex sugars which possess unique structural diversity and are resistant to infant gastrointestinal digestion. Thus, these sugars reach the infant distal intestine intact, thereby serving as a fermentable substrate for specific intestinal microbes, including Firmicutes, Proteobacteria, and especially infant-associated Bifidobacterium spp. which help to shape the infant gut microbiome. Bacteria utilising HMOs are equipped with genes associated with their degradation and a number of carbohydrate-active enzymes known as glycoside hydrolase enzymes have been identified in the infant gut, which supports this hypothesis. The resulting degraded HMOs can also be used as growth substrates for other infant gut bacteria present in a microbe-microbe interaction known as 'cross-feeding'. This review describes the current knowledge on HMO metabolism by particular infant gut-associated bacteria, many of which are currently used as commercial probiotics, including the distinct strategies employed by individual species for HMO utilisation.


Asunto(s)
Microbioma Gastrointestinal , Leche Humana , Lactante , Humanos , Leche Humana/química , Leche Humana/metabolismo , Oligosacáridos/análisis , Oligosacáridos/metabolismo , Bacterias/genética , Bacterias/metabolismo , Azúcares/análisis , Azúcares/metabolismo
19.
Nutrients ; 15(14)2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37513505

RESUMEN

Breastmilk is the optimal source of infant nutrition, with short-term and long-term health benefits. Some of these benefits are mediated by human milk oligosaccharides (HMOs), a unique group of carbohydrates representing the third most abundant solid component of human milk. We performed the first clinical study on infant formula supplemented with five different HMOs (5HMO-mix), comprising 2'-fucosyllactose, 3-fucosyllactose, lacto-N-tetraose, 3'-sialyllactose and 6'-sialyllactose at a natural total concentration of 5.75 g/L, and here report the analysis of the infant fecal microbiome. We found an increase in the relative abundance of bifidobacteria in the 5HMO-mix cohort compared with the formula-fed control, specifically affecting bifidobacteria that can produce aromatic lactic acids. 5HMO-mix influenced the microbial composition as early as Week 1, and the observed changes persisted to at least Week 16, including a relative decrease in species with opportunistic pathogenic strains down to the level observed in breastfed infants during the first 4 weeks. We further analyzed the functional potential of the microbiome and observed features shared between 5HMO-mix-supplemented and breastfed infants, such as a relative enrichment in mucus and tyrosine degradation, with the latter possibly being linked to the aromatic lactic acids. The 5HMO-mix supplement, therefore, shifts the infant fecal microbiome closer to that of breastfed infants.


Asunto(s)
Lactancia Materna , Microbiota , Humanos , Lactante , Femenino , Leche Humana/química , Fórmulas Infantiles/análisis , Oligosacáridos/análisis
20.
Trends Immunol ; 44(8): 644-661, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37438187

RESUMEN

Childhood allergy, including asthma, eczema, and food allergies, is a major global health burden, with prevalence increasing dramatically and novel interventions needed. Emerging research suggests that human milk oligosaccharides (HMOs), complex glycans found in breastmilk, have allergy-protective properties, indicating exciting therapeutic potential. This review evaluates current literature on the role of HMOs in allergy, assesses underlying immunological mechanisms, and discusses future research needed to translate findings into clinical implications. HMOs may mediate allergy risk through multiple structure-specific mechanisms, including microbiome modification, intestinal barrier maturation, immunomodulation, and gene regulation. Findings emphasize the importance of breastfeeding encouragement and HMO-supplemented formula milk for high allergy-risk infants. Although further investigation is necessary to determine the most efficacious structures against varying allergy phenotypes and their long-term efficacy, HMOs may represent a promising complementary tool for childhood allergy prevention.


Asunto(s)
Hipersensibilidad a los Alimentos , Leche Humana , Lactante , Femenino , Humanos , Niño , Fórmulas Infantiles/química , Hipersensibilidad a los Alimentos/prevención & control , Lactancia Materna , Oligosacáridos/uso terapéutico , Oligosacáridos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...